An Initial Assessment of Cooperative Action in Wi-Fi Networking

Christian Sandvig University of Illinois at Urbana-Champaign

This article was published in 2004 in *Telecommunications Policy* 28(7/8): 579-602. (This is a March, 2004 author's draft – please cite the journal article as the text differs.)

Correspondence to: Christian Sandvig

244 Lincoln Hall

University of Illinois at Urbana-Champaign

702 S. Wright St. Urbana, IL 61801

Tel (217) 333-0141 FAX (217) 244-1598

Email: csandvig@uiuc.edu

An Initial Assessment of Cooperative Action in Wi-Fi Networking

ABSTRACT

In the development of past infrastructures, cooperative and amateur action has been a vehicle for diffusion, experimentation, innovation, popularization, and the provision of new features or services. 802.11 ("Wi-Fi") cooperatives are now proliferating. This user study considers three cases of cooperative action in the discovery, development, and provision of 802.11 (Wi-Fi) networks: (1) mapping and "Warchalking," (2) open-source portal software, and (3) the provision of service as an alternative to paying for a commercial subscription. It finds that these co-ops exist primarily to build elite expertise, but that it may be possible to direct these skillful groups toward societal goals.

ACKNOWLEDGEMENTS

François Bar, Hernan Galperin, Robert Cannon, Anne Hoag, and the journal's anonymous reviewers provided valuable comments on this article. Monroe Price and Philip Howard provided the materials, location, and encouragement for the construction of *Consume* node "SpeakersCorner." Claire Charbit kindly shared interview transcripts from her own research. Paul David and the participants in the Bellagio Conference on Public Values, System Design, and the Public Domain contributed essential ideas to the overall project. The UK portion of this research was made possible by a visiting fellowship from the Oxford Internet Institute, Oxford University. This material is based on work supported by the National Science Foundation under Grant No. IIS-0308269.

KEYWORDS: wireless, innovation, popularization, infrastructure, unlicensed, 802.11

RUNNING HEAD: Assessing Wi-Fi Cooperatives

An Initial Assessment of Cooperative Action in Wi-Fi Networking

In the summer of 2003, if you had opened your laptop at the northeast edge of Speaker's Corner in London's Hyde Park (near the Supreme Ice Cream stand, just up the bicycle path from the Honest Sausage), your wireless Internet card would have received a signal that has been causing great excitement among some observers of telecommunications. This signal is arresting not because it is technically different from any other, but because of the unusual human organization behind its production. Most notably, with this signal you didn't have to pay anyone to use the Internet.¹ Strangely organized signals like it have been produced across the urban developed world by groups of cooperating individuals since 2000. Their proliferation has produced claims that "ad hoc, self-organized networks of grassroots users of inexpensive, high speed, wireless Internet communications now challenge existing technologies, regulatory regimes, and industries" (Rheingold, 2002: see ch. 6) for although "whether wireless guerrillas blanket the world with inexpensive high-speed Internet access before the big players crush them remains to be seen" (p. 133), the prospect that they might has captured the imagination of many in the popular press and beyond. "While the basic IEEE 802.11b [Wi-Fi] might not be the best technical solution for the last mile...[it] is the most cost-effective solution" (Escudero, 2003a, p. 1) "Wi-Fi is not only bringing new technical opportunities at very low cost but [it] is also challenging the traditional telecommunications markets." (Escudero, 2003b, p. 3). At the most extreme, this cooperative action in Wi-Fi has been hailed as "a broadband system built by the people and for the people" that means, "everything you assumed about telecommunications is about to change." (Negroponte, 2002).

The "guerrilla" movement in wireless Internet access is no surprise to scholars of telecommunication policy. "Infrastructures" are often thought to be large-scale projects best attempted by large entities: governments build roads and telecommunications companies provide phones. But historically, rural co-ops built roads, and farmers provided their own phones—although sometimes not very good ones. When is a decentralized, cooperatively run communication infrastructure a significant alternative to the centrally driven, commercial systems that have historically prevailed? The research literature on utility and communication infrastructures from the 19th century to today answers, "almost never," or "only in the early stages of a system." In electricity (Hughes, 1983), radio broadcasting (Douglas, 1989), and the

telephone (Fischer, 1992), amateur and co-op involvement in early phases of a system's development produced innovation and popularization benefits, and in some few cases amateurs and co-ops appear to remain significant in the longer-term: from the Ocean Spray agricultural co-op in the US to Scandinavian Broadband Collectives. This user study considers 802.11 (Wi-Fi) related co-ops in the US and UK, assesses their role in system development and the likelihood of any benefits to society in the context of this previous research, and considers what role public policy action and further scholarly research might play in realizing any benefits from co-ops.

We will explain that previous research predicts co-ops to be a vehicle for experimentation, innovation, diffusion, popularization, and the provision of new features or services. As Schuler (1994) has noted for Community Networks, these loose groupings of people might be dedicated to a number of very different tasks, from education to provision. Similar to Fischer's (1987a) analysis of rural telephone co-ops, each role might also trigger different weaknesses (disorganization, unreliability, lack of expertise) and also strengths (flexibility, heightened awareness of public interest concerns, low cost) of the collective. The study employs empirical research on three case studies in an embedded, multiple-case design sampled to replicate earlier findings about co-ops (after Yin, 1994). Each case concerns a different area of wireless Internet service: discovery, development, and provision. For network discovery, it analyzes "Warchalking" and Wi-Fi mapping as a low-tech, cooperative version of federated network discovery services like Boingo. For development, it analyzes the Sonoma County Cooperative's NoCatAuth/NoCatSplash software as an alternative to the commercial gateway daemons found on devices like 3Com's Home Wireless Gateway. For provision, it considers Consume's attempt to build a parallel Internet infrastructure through self-provision in the UK as an infrastructural alternative to ISPs like BT OpenWorld. Consistent with von Hippel (1988; and see von Hippel & von Krogh, forthcoming), significant innovation benefits can be produced by users in a co-op setting. This suggests a number of possible strategies for telecommunications policy: Co-ops can indeed be superceded by commercial infrastructure as the system develops, or they can be employed as an important symbiote to carriers, providing service in commercially undesirable areas and addressing public goals that other organizational forms would not.

This article will proceed by first elaborating the term "cooperative action." Second, it will consider the role of such cooperative action in the previous literature on communication network development. Next, it will introduce Wi-Fi and the Wi-Fi co-op as a topic area. Then, the article will present the three empirical cases of (i) Warchalking/Wi-Fi mapping, (ii) NoCatAuth/NoCatSplash, and (iii) *Consume* as evidence of cooperative action. Finally, the article will compare the findings from these cases to the literature's treatment of co-ops, propose experimental policy proposals to harness co-ops and a set of research questions to further assess the place of the cooperative form in telecommunications.

The Challenge of Defining Cooperative Action

A wide variety of cooperation has often been lumped together with the wastebasket term "cooperative." The word itself is taken almost directly from its Latin root and has been in use since 1603. Cooperatives are often contrasted to commercial organizations, as though the distinguishing feature between cooperative and commercial forms of organization is the *profit* motive. However, some organizations such as retail grocery co-ops that proudly champion the label "co-op" are quite difficult to distinguish from their commercial counterparts. Indeed, they function much the same even in profit motive, but what would be known as profit is returned to members at the end of the year, causing the grocery co-op to function as an employee-owned corporation. In other uses, co-op is a synonym for *altruism*, presumably linguistically opposed to "competition," and cooperative is then a synonym for social activists, or the name of a collection of social activists or a social movement (after Kling and Iacono, 1995). Related to this meaning a cooperative is any group that bands together to deliver some benefits to its members – this is cooperative action as analogous to collective action. While this phrasing connotes some form of protest or social conscience, as a practical matter these need not exist: an agricultural co-op attempts to secure stable prices for its members through block branding and sales, and this is a form of self-interested collective action. Here profit is the first motive, but the profit is simply channeled differently than it would be with a group of individual sellers. The surprise in the form of the ag co-op is that the members have chosen to compete in a different way (and not with each other), but it is not true that they do not compete. In yet another sense, cooperatives are distinguished by the *professionalism* of their activities, and a "co-op" evokes a haven of amateurs that band together for all things, even things they are not qualified to do - as related to a commune. This is also the sense in which a cooperative is sometimes thought to be

operated by people who have other full-time jobs – a hobbyist organization. Still, professionalization can also be present in a cooperative: there are a variety of forms of organization that celebrate the term "cooperative" but whose level of professionalization is indistinguishable from a commercial concern – one example in the US would be a Credit Union as an alternative to a Bank. Finally, it seems strange to define a conceptual organizational form by a lack of organization: yet a group may also be labeled a co-op because it has so little organization, it is too anarchic to be capable of interest in profit or commerce.

The three dimensions of *profit motive*, *altruism*, and *professionalization* then appear to elaborate the most common meanings of "co-op." This study will consider a wide range of activities from the bestiary of co-ops. Rather than settle on a single definition and use a dictionary's strictness to choose our cases, instead we will continue to use "co-op" as we found it – as a messy agglomeration of non-commercial, activist, and amateur. After reviewing the case studies of co-ops that follow we will then attempt some generalizing conclusion about what portion of the co-op sphere will be most useful to analyze in the future, and whether or not it is a more specific sub-concept of "co-op" that is of theoretical interest. In the next section we will review the place of cooperative action in the literature on the development of communication systems and form some expectations of how Wi-Fi co-ops will operate in a system of wireless communication.

Popularizers and Innovators: The Role of Cooperatives in Related Literatures

The literature on large-scale systems of communication and other utilities has often analyzed the role of co-ops, although sometimes distinguishing them as "independents" or "amateurs." Hughes' groundbreaking synthesis of the technical, political, economic, and the social in the early development of electric utility systems (Hughes, 1983) advanced a loosely-structured model of four phases: (1) invention and development, (2) transfer across region or society, (3) growth in scale leading to the emergence and solution of critical problems, and then (4) the acquisition of momentum. Hughes was explicitly influenced by early systems theory (Parsons, 1951, 1966, 1971), itself an outgrowth of Wiener's cybernetics (1948). Hughes saw that there was a role for amateur action at the beginning of new technologies—as there is initially no profession for an innovation there can be no professionals. In Hughes's first stage, invention and development, it was the work of bold entrepreneurs and innovators that pushed the technology forward before the technology was stable enough for more organized financial and

business interests to step in. In this conception, co-ops are important at the introduction of a system, but then they fade away as the need for daring and the tolerance for disorganization diminishes. This conception is consistent with other theoretical models for infrastructure development (such as the Infrastructure Development Model; see Sawhney, 1992). Beyond electricity, the last 20 years have seen a new vigor in the study of sociotechnical systems *of communication*, especially studies employing historical methods (Streeter, 1996a). Many of these studies were inspired by the social constructivist movement in technology studies pioneered in part by Hughes (Bijker, Hughes, & Pinch, 1987; Bijker & Law, 1992; for a philosophical overview and critique, see Hacking, 1999), sometimes called "social shaping" (Williams & Edge, 1996). From this literature we find evidence that any given large system is special — each is so different that each requires its own analysis (Fischer, 1985; Hughes, 1987) and any attempt to form expectations from other systems may end in frustration. Yet, the frequent occurrence of cooperative action in the literature begs for comparison.

The most directly comparable example may be the early development of radio. In an extensive study, Douglas (1989) refines the concepts of strategy and structure from the history of the corporation (Chandler, 1962, 1977; Noble, 1979) and details how a realistic grassroots challenge to centralization was mounted by amateur enthusiasts and what she terms "the cult of the boy operator" before 1920. Other authors concur that, "by 1914...the largest system of communication by radio in the United States...was an ad hoc, nonprofit network run by...hobbyists" (Streeter, 1996b, p. 65; for a related account, see Smulyan, 1994). While these accounts agree that co-ops were crucial in early radio, they (at least implicitly) support Hughes's notion of an initial emphasis for the public benefits of the co-op. For example, the cooperative American Radio Relay League (ARRL), founded in 1914, was instrumental in the popularization of radio technology in the US with its well-publicized coast-to-coast relays. The ARRL is still in existence, but today its role in the popular mind is much reduced. Its relay activities have faded into an amateur radio world that is widely perceived as esoteric. In this the ARRL functioned just as Hughes might have predicted: important in the first stages as an agent of popularization, then marginalized.

There are many parallels beyond radio; wireless co-ops may be very reminiscent of early telephone co-ops studied by Fischer (Fischer, 1987a, 1987b). Fischer's award-winning work America Calling (Fischer, 1992) is a study of the role of the telephone in social life before 1940

and also a careful analysis of co-ops in the independent era of telephony. His research refutes the idea that the telephone was a revolutionary or disruptive technology in everyday life: Fischer analyzes volumes of empirical data about the telephone to conclude that it was used as a tool for what he terms sociability and convenience (see also Fischer, 1987b). Fischer uses these data to develop the concept of *user autonomy*: while users are constrained by the external factors of income, price, firm behavior, and government regulation, they are (1) relatively resistant to pressure from vendors, (2) not subject to a technological imperative, and (3) work to adapt a technology to their own ends. Speaking particularly to point 3, Fischer demonstrates that telephone users found what he terms "impractical uses for the telephone industry's practical device" (p. 269). The telephone was promoted as a tool of productivity (practicality) and users adapted it for leisure (impracticality), but for leisure activities that were consistent with their past practices. The co-op is a key component of his argument for user autonomy, as when firms decline to provide features or even service, the users in his oral histories simply form a co-op and do it themselves. We see in this a second role for co-ops beyond Hughes: they are a vehicle for the frustrated needs of users that cannot find satisfaction in the offerings of existing vendors. Like Hughes, Fischer notes that these offerings are later commodified by successful firms and the co-ops that acted as an agent for the introduction of a new feature or service to a new area are superceded.

Internet Co-Ops: Community Networks and Public Access Centers

Contemporary cooperative action has also appeared frequently in the research literature, although often under other names. Some of the wireless co-ops we will later consider wish to portray themselves as the heir apparent to the community networking (CN) movement (for an overview of CNs, see Schuler, 1994, 1996). CNs include such entities as *PEN* in Santa Monica, CA (see Rogers, Collins-Jarvis, & Schmitz, 1994; Schmitz, Rogers, Phillips, & Paschal, 1995), *Netville*—a "wired suburb" of Toronto, Canada (Hampton & Wellman, 1999, 2000), *Blacksburg Electronic Village* and the *Seattle Community Network* (Silver, forthcoming). For a review of the research on CNs, see Harrison & Stephen (1999). While some CNs may operate Wi-Fi services, cooperative action in Wi-Fi comes in a number of flavors beyond provision and training, and in this only the co-ops related to provision and training are very comparable to CNs. If Wi-Fi co-ops have their roots in other organizations, these are more likely to be user groups than they are CNs (e.g., the Bay Area Wireless Users Group)—especially user groups for open-source

operating systems. Also relevant are governmental initiatives at community centers and public libraries to provide access to the Internet. While these attempt to serve many of the same goals as CNs (Straubhaar, LaPastina, Lentz, Main, & Taylor, 2000), aside from the CNs that are run by governments, public access centers are often considered separately by the research literature (for example, Sandvig, 2003; for a collection, see Kahin & Keller, 1995). In the interdisciplinary *social informatics* tradition (Kling, 2000), O'Neil reviews the research to date on both CNs and public access centers (2002), finding five broad normative themes within which past research has located the consequences of "community" informatics: (1) "strong" democracy, (2) social capital, (3) individual empowerment, (4) sense of community, and (5) opportunities for economic development (p. 79-82). We will apply these categories below after our examination of co-op activity in the area of Wi-Fi, as this seems to provide a set of motives beyond innovation and popularization that can explain the co-op in telecommunications.

From this review, we expect co-ops to rise to prominence in the early stages of a large-scale system as a vehicle for experimentation, innovation, diffusion, popularization, and provision of features or services that are not on offer from commercial vendors. Much of the literature implies that the co-op form will later wane in importance, but studies of CNs suggest a five-fold typology of consequences beyond those just mentioned that also may be significant reasons to expect co-ops to continue at any stage in a system's development. Next, we will briefly introduce 802.11 wireless networking and then proceed to our case data.

An Overview of Wi-Fi Networking

In industry circles, a medium-range wireless data technology now called "Wi-Fi" was thought to be a way that individuals could solve small networking problems in their home or office. Wi-Fi employs unlicensed spectrum, and so after Wi-Fi's coming of age in the late 1990s, anyone could build a network linking computers (in a home, office, or classroom) with a range of about 150 feet, simply by buying the equipment.² With the introduction of the Apple AirPort in late 1999, Steve Jobs promised users that, "it's a liberating experience to surf the Internet...while freely moving about your home or classroom." Echoing Fischer's concept of user autonomy, however, people have had other ideas about where they wanted to freely move.

Wi-Fi installations over the past four years have produced a "cloud" of Wi-Fi connectivity in many metropolitan areas similar in density to that produced by earlier coordinated commercial data networks such as *Metricom's* Ricochet.⁴ In network design, the

concept of a "cloud" is an abstraction for a single network whose internal implementation is irrelevant to the problem at hand. The Wi-Fi cloud is actually composed of heterogeneous networks that interoperate by accident as often as by intent. Individuals purchased Wi-Fi devices like the AirPort to connect a computer in the den to a cable modem in the living room without having to re-wire their house, but the result of many such individual purchases has been that laptop users all over the world are surprised to find that when they open their computer in an unfamiliar place, they have Internet connectivity - through generosity, ignorance, or security failure of some unknown network. At the talks leading to the development of the 802.11 (Wi-Fi) protocols (see Institute of Electrical and Electronics Engineers, 1999), interoperability was of paramount importance to industry representatives, not security. The result was a default implementation of Wi-Fi products that after some early hiccups easily allowed any Wi-Fi device to communicate with any other device by default.⁵ Indeed the catchy slogan "Wi-Fi" was coined by an industry group as a trust mark to indicate that a device bearing the "Wi-Fi" seal could be assured to interoperate with any other device bearing that seal, from whatever vendor.⁶ Wi-Fi, short for "wireless fidelity" was meant to invoke the high quality connotations of "Hi-Fi" stereo equipment among audiophiles in the 1970s and 80s. Wi-Fi Access Points (APs) were initially set up by individuals in scenarios that echo Steve Jobs' speech: a homeowner with a cable modem on the first floor and a home office on the second floor who does not want to run wiring to connect them might buy a Wi-Fi AP to bridge this distance. Wi-Fi networks meant to support many users across several APs are also set up by corporations, cafes, and governments.⁷ In these functions, Wi-Fi is analogous to Ethernet wiring, although it can be more flexible and convenient. Indeed, an early name for Wi-Fi was "Wireless Ethernet."8

Larger Wi-Fi "meta-networks" function more like a shared directory and authentication system that allows sharing across many smaller networks.⁹ For instance, one of the early nationwide Wi-Fi providers in the US was *Wayport*, an operator of hundreds of Wi-Fi locations around the US, including APs in airports and hotel chains. *Surf and Sip* at the same time focused on locating APs in restaurants and cafés. In 2002, *T-Mobile* began offering Wi-Fi access in addition to its traditional cellular phone service. These three examples illustrate three different business approaches and economic arrangements to the deployment of macro Wi-Fi networks: the first uses a few agreements with nationwide hotels, the second crafts individual deals with

many small business owners, and the third leverages an existing technical organization and antenna sites of its cellular network. There are also hybrid approaches, as T-Mobile has also secured an agreement to provide Wi-Fi service in locations of the Starbuck's Coffee chain. Yet another approach, followed by *Boingo* and *iPass*, is to "federate" existing networks by offering centralized signup and billing facilities, along with connectivity software and technical assistance (for a review of these approaches, see Bar & Galperin, 2004).¹⁰

To sum up, in this section we have seen that Wi-Fi developed through individual and collective noncommercial or small-scale commercial action. While the first users were encouraged to use Wi-Fi to "move freely about their home or office," they built an extensive cloud of connectivity that soon had large telecommunications companies entering the Wi-Fi market with a variety of strategies. It is the aim of this study to consider some of the early wireless co-ops and assess their role in the development of Wi-Fi as a system, in light of the earlier treatments of cooperative action reviewed in the literature.

Who and Where are Wi-Fi Co-ops?

Wherever there is Wi-Fi there are users cooperating to share it. In most metropolitan areas of the western world, some of this cooperation has become organized enough to have a Web site and regular meetings. In 2003, combining multiple directories of Wi-Fi co-ops produced 52 groups in six countries (the US, Canada, the UK, Ireland, New Zealand, Australia) with an extensive online presence in English.¹¹ Most cities have some kind of Wi-Fi-related cooperative effort a Web presence: at the very least a traveling Wi-Fi enthusiast might use "International Wi-Fi Meetup Day" (the 2nd Wednesday of every month) to connect with likeminded tinkerers.¹² While CNs and public access centers are fairly well-justified enterprises from a normative perspective, Wi-Fi co-ops are a much stranger animal. While some co-ops are outgrowths or projects of CNs, many are not. While activists and policymakers working on CN and public access projects take as a central premise that their facilities exist to provide free or subsidized access to underserved populations (the socioeconomically disadvantaged, underserved rural areas, etc.), Wi-Fi co-ops often exist to provide free access to an inexpensive service for the rich – it may take over a thousand dollars of personal equipment to participate in a co-op (laptop/palmtop, wireless card, etc.). In some areas co-ops has been employed to establish point-to-point broadband connections to rural households that are not served by cable

modem or DSL services, but it is fair to say that the bulk of the Wi-Fi co-op activity is occurring in wealthier metropolitan areas.

If we focus on our necessarily sloppy definition of "cooperative," elaborated earlier, we find that any collection of non-commercial, amateur, or altruistic actors may need to be data in this study. However, the point here is not to characterize all cooperative action, or even all cooperative action in Wi-Fi, but instead to strategically sample three contrasting functions that a co-op might serve and compare the operation of the cooperative form in each, then attempt to assess the societal benefits of cooperative action in these different circumstances. So we will sample for breadth and contrast rather than for generalizability, yet we will only consider functional areas that seem likely to be important to the system as a whole. In this, we can consider a system of wireless network service as conceptually requiring three things: (i) a mechanism for users to determine where access might be found - this we might call a directory service or more generally a "network discovery" function; (ii) a mechanism for allowing or denying users access to the networks that they have discovered - we will call this an "authentication" function; 13 (iii) finally we must have a mechanism for actually providing network transport - we will call this the "provision" function. Note that we have folded a wide range of activity into "provision" - this would include traditional telecommunications functions such as billing and technical support for provision. However we do this intentionally; if directory services and authentication are separable from provision as they are in our typology, they might each have their own billing and technical support.

Table 1 presents an overview of our three case studies, selected for each functional area described above. Each case study has been listed with an opposition, as co-ops are often opposed to or substitutes for commercial activity, and our co-ops are no exception. First we will discuss co-ops that produce maps and markings for network discovery: these are substitutes for national or federated Wi-Fi service maps provided by commercial ISPs. Second we will discuss a software project and protocol called NoCatAuth that allows authentication services for free, open, or co-op network providers. This is meant as a substitute for the ordinary off-the-shelf gateway software that might be included in a commercial product like the 3Com Home Gateway, although it might also be considered analogous to commercial "splash screen" or credit card authorization software implemented internally by network providers that charge for service. Third, we will consider *Consume*, a co-op network operator that attempts to use a

cooperative system to provide transport and technical support as an alternative to a commercial broadband ISP like British Telecom's OpenWorld.¹⁵ The following presentation of these three cases was generated by compiling and analyzing public primary source material from these coops (what members say to each other and what the co-ops say about themselves), supplemented where noted by secondary sources (what news reports say about these co-ops and what other researchers write about them).¹⁶ We will begin with what may be the earliest case and the accidental discovery of sharing.

[Insert Table 1 about here.]

Case One: Warchalking and Wi-Fi Mapping as Network Discovery

As a consequence of the multifaceted origins of the various Wi-Fi networks, finding connectivity – and contracting for access – can be much more confusing than, say, subscribing to telephone service. On the corporate side, companies like *Boingo* address that need, operating macro-level networks that offer convenience for a price. As mentioned above, *Boingo* federates heterogeneous local networks to present a unified national footprint. "Warchalking" is the grass-roots equivalent, a decentralized *Boingo*. Directory service seems like a strange choice for cooperative action: telephone books are much preferred over collecting the telephone numbers of a city by word-of-mouth, and yet given that most of the telephone book is useless to any user most of the time, a local approach to a directory service might have some merit.¹⁷

Warchalking began in London on June 24, 2002 with Matt Jones, a former management consultant with the online moniker "Black Belt Jones." Jones noticed that he could obtain free Wi-Fi at several locations around the city when he stumbled upon "open" micro-level networks, and wished that he could share these hard-won discoveries. He designed three symbols that—when marked on buildings with chalk—would indicate that a Wi-Fi AP was near. He posted these on his personal Web site. This received worldwide media coverage within a few weeks and spawned "Warchalkers" in most major cities where Wi-Fi exists. Black Belt Jones was inspired by the diverse lexicon of "hobo signs" prevalent in the depression-era United States (see Figure 1): the Warchalking symbol for a closed node is the same as the hobo sign meaning "nothing to be gained here" (for a review of hobo signs, see Richards & Associates, 1974; Vandertie, 1995). Driving around with an antenna to find wireless networks is analogously called "Wardriving." ²⁰

Warchalking started in London, but it has been reported globally by the press and instances have been documented on the Web in most major cities of the world. Perhaps the most significant Warchalking occurs not with chalk, but with bits. Web-based geographic information systems have been employed by groups that we will call "Wi-Fi Mappers" using free open-source tools and public map data.²¹ These public connectivity directories allow anyone to type in a post code (or ZIP code) and determine the density of APs in a given geographic area. These maps allow micro networks to work as though they are a macro network without any explicit affiliation. Instead of consulting a glossy map issued by a commercial service provider to see where Wi-Fi access might be found, a user can consult a free on-line directory like http://www.wifimaps.com/.

Because these maps promote access points that may be unintentionally public, the practice of Wi-Fi mapping has been surrounded by controversy: governments are considering whether or not unauthorized use of Wi-Fi should be considered theft, and whether or not Warchalking is simply a form of graffiti tagging that criminals use to choose victims. Telecom CEOs have made public statements urging the criminalization of Warchalking on the grounds that unauthorized users decrease performance for the network's owners.²²

[Insert Figure 1 about here.]

[Insert Figure 2 about here.]

Mapping Databases as Directory Services

Warchalking symbols and Wi-Fi databases represent a large mass of data that were painfully collected over the last four years. As Black Belt Jones accidentally stumbled upon network access in London by opening his laptop in the right place, now these co-op network directory services require an army of network discoverers that will effectively do the same and report back what they have found through chalk or bits. The people who compile these directories are wireless enthusiasts with laptops or PDAs, a GPS device to plot their location, and a Wi-Fi card. Wi-Fi mapping databases (see Figure 2) are able to easily list APs because each has a unique identifier (the MAC) and may also have a human-interpretable name (the SSID--for example, "keepondriving") that can be correlated with reports from many wardrivers. The database estimates the location of each AP by averaging the GPS data from multiple samples, and it makes note of whether or not the network is open or if running a simple form of

encryption (WEP) that usually indicates whether or not the network is not available to visitors or free riders. We will further consider the army that finds these Wi-Fi APs by considering one Wi-Fi mapserver in more detail. In Figure 2, access points are plotted on top of a public domain Chicago street map (the grid of lines with street names in gray), estimated AP locations are marked by triangles and named by SSID, and estimated coverage areas are marked by circles.

One of the most comprehensive US Wi-Fi mapping databases, http://www.wifimaps.com/, is produced by *Zhrodague*, a Pittsburgh, PA group of computer programmers, self-defined as "a collection of computing facilities and the admins who wield them." The *Zhrodague* group encompasses a *Quake* clan, an Internet-only TV channel, and works together on a variety of open source projects. Figure 2 depicts output from one of these, the *Zhrodague* Mapserver (now called wifimaps.com). *Zhrodague* employed open source mapserver software and census data generated by a University of Minnesota project (funded by NASA), then repurposed these to map Wi-Fi.24 *Zhrodague* allows us to note that people may participate in many co-ops at the same time: some members of *Zhrodague* also work for the Pittsburgh Wireless Community (*pghwireless*) a co-op which raises money to install \$200 mailorder computers ("Wal-Mart Specials") in participating businesses to provide an open wireless cloud. During the day, the members of *Zhrodague* work as computer consultants for businesses. At least one member of *Zhrodague* installs the same Wi-Fi networks during the day as a consultant that he maps at night as a Wi-Fi mapper and competes with as a co-op activist.

Maps such as Figure 2 depend upon the large amount of public domain geodatabase information available from the government, as well as the wealth of free software for manipulating it produced by government-subsidized academic research and open source software producers. For these maps to be filled in with information about Wi-Fi, someone has to drive around the city discovering Wi-Fi networks. The members of *Zhrodague* drive around Pittsburgh, but wifimaps.com contains much more information than Pittsburgh. Users anywhere on the Internet are encouraged to submit data for the mapserver by a system of reputation ranking. The mapserver keeps an alias for any wardriver that submits data and then (in a manner akin to the high score list of a video game) tabulates the number of APs the person has discovered. All of this is facilitated by standardization on a few free software packages that are used to gather and store this data: e.g., *Kismet* and *NetStumbler*. For an overview of the technical details of this mapping, see Byers & Kormann (2003).

Motivations for Mapping and the Army of Cool

While a commercial concern like *Boingo* might use field representatives to discover Wi-Fi networks and affiliate them, *Zhrodague* and wifimaps.com uses strangers and this system of reputation ranking. By also providing a bulletin board system, contributors can discuss network discovery technique, preferred equipment, and brag about their finds. Some of the reputation systems proposed by *Zhrodague* are very sophisticated. Although not implemented at the time of writing, one proposed way of filling blank areas of the map was to add a weight (or "bounty") to the reputation ranking of APs discovered in the blank area. In this manner, contributors could rise up the rankings even faster if they discovered networks in areas where no discoveries had yet been made, as these discoveries would have more reputation value. The network discoverers – the agents of the directory service — are an invisible army of enthusiasts who never meet each other, passing spare time compiling maps and uploading them to a co-op database that directs them on their errands.

Just as some of Fischer's early telephone co-ops did not provide very good service, considered skeptically, warchalking does not seem to be a particularly effective directory system.²⁷ Bad weather might wash away a chalk mark,²⁸ the presence of a chalk mark alerts the network's owner that someone is sharing their service, the marks themselves are not particularly easy to see – if they are drawn on one side of a building and the user approaches from the other side, the directory service is wholly ineffectual. Furthermore, the mark for a closed network ("nothing to be gained here" in the hobo lexicon) makes the least sense, as it takes effort to make and maintain the mark, but it conveys no useful information to the wandering Wi-Fi user except "don't open your laptop here." If warchalking were an effective directory service, the user would not be tempted to open his or her laptop while wandering the streets in any case, and so the mark is a wasted effort.

Some situate warchalking as a primitive precursor to the more practical GIS-driven Wi-Fi map databases like wifimaps.com. Central Wi-Fi databases allow a much more practical way to determine where to get Wi-Fi access in any given area, with the one failure that they cannot be consulted while on the streets. However, the first geographic databases like the *NetStumbler* mapserver were in operation before Warchalking was conceived, so if there is a causal relationship between them, the order must be reversed.²⁹ As mentioned earlier, Warchalking received a large amount of media attention, and it may be that it is entirely a media phenomenon. That is, it is a clever idea and a good story that gained wide publicity even

though it was not actually happening in the manner that it was described. While many instances of Warchalking are recorded on personal Web sites (and in some central repositories like http://www.warchalking.org/), these are often instances of bragging where the user owns the Wi-Fi AP that was warchalked. Warchalking is then a way to affiliate with a subcultural community rather than a practical directory service, as predicted by two of O'Neil's consequences. First, warchalking promotes *individual empowerment* by providing an excuse and a group practice around which to organize learning about wireless Internet technology, and warchalking promotes a *sense of community* by giving a subculture its focus.

GIS-based Wi-Fi databases appear to be more useful on their own terms, and there are even reports that commercial providers attempt to "suck" the content of some co-op databases through the application of repeated automated queries. However, when reading the extensive supporting discussion for aaround these services it is remarkable how little discussion is related to using the directory rather than providing it. Most of the talk centers on equipment, node discovery, and the technical and aesthetic problems of mapping. A frequent feature of personal web pages, mailing lists and discussion boards devoted to these directories is the exchange of maps, each more beautiful than the last, with a running commentary describing how the author achieved the beautiful features of, for example, a luminous, gauzy purple cloud representing Wi-Fi coverage, superimposed over an aerial photograph showing the actual buildings of the area. It is the common practice of all of these directories to significantly overestimate Wi-Fi coverage by assuming a very large radius of coverage from the estimated center of each network. Little comment is given to these fudges, and if the mapservers were regularly used by people trying to find Wi-Fi access, more discussion of this sort of design choice would be expected. Indeed, when finding Wi-Fi service is mentioned in these fora, the usual discussion uses word-of-mouth and personal experience rather than the database of nodes, since the picture drawn by the mapserver is likely to exaggerate the available coverage and provides no insight into how each node interacts with the surrounding buildings.³⁰ We conjecture, then, that these beautiful maps serve as the poetry of the Wi-Fi army. Lured by cool into spending their time finding Wi-Fi APs, these foot soldiers work to refine and trade their maps to demonstrate their exploits, not to provide a practical directory service for users. Next, we will consider our second case, the authentication function of network, and we will turn to

NoCatAuth software – a software package that might be used by a Wi-Fi provider discovered by mappers and listed in wifimaps.com.

Case Two: NoCatAuth as an Authentication Service

Thinking about mapping and "borrowing" Wi-Fi prompts a consideration of selfishness and altruism: a central concern for all of social science. In the world of Wi-Fi, a Californian wireless co-op called *NoCat* is attempting to fix a solution to human selfishness in software code. Named after a famous Albert Einstein quote explaining the operation of radio,³¹ NoCat is a Wi-Fi co-op active in the provision of service in Sonoma County. However, in their experience providing connectivity, the members of the co-op realized that there were coordination needs beyond provision that could be realized by cooperative action. As Rob Flickenger, a leader of the project, explained:

While some node owners are perfectly happy opening their networks to whomever happens to be in range, most of us hesitate at the thought of paying for our neighbors to use our bandwidth. After all, apart from using up resources that we're paying for, anonymous users could potentially abuse other networks and have their shenanigans traced back to our network! If we want to provide responsible wireless access, we need a way of securely identifying users when they connect, and then only allocate the resources that the node owner is willing to contribute.³²

(Note that the overall NoCat project is also profiled briefly in print by Flickenger himself; see Flickenger, 2003.)

NoCatAuth turns a computer running Linux/BSD into an access point and authentication gateway. A user running NoCatAuth on a home system has the ability to provide any visitor with a welcome screen, terms of service page, and/or authentication screen. In a manner virtually identical to what happens in a commercial Wi-Fi hotspot, when a Wi-Fi visitor attempts to connect to a network provided from a NoCatAuth server they may see a splash page inviting them to login. This software functions both as a prioritization service and an authentication service – NoCatAuth allows "free riders" while removing the cloak of anonymity from free ridership, but at the same time NoCatAuth allows the owner of the

connectivity to assign priority to their own use, or to prohibit free riders from doing some things with Wi-Fi that the owners are allowed to do.

In technical terms, NoCatAuth intercepts outgoing Web requests and redirects them to an authentication server somewhere on the Internet. If the visitor is authenticated, the authentication server provides the local implementation of NoCatAuth with a reply signed with PGP (Pretty Good Privacy) encryption. If the local implementation of NoCatAuth accepts these credentials, the visitor is then redirected to their original Web request and subsequent requests pass through the NoCatAuth gateway (for more technical detail, see Kershaw, 2003). NoCatSplash is at the time of this writing simply a faster version of NoCatAuth with fewer features. Finally, NoCatAuth is also a protocol, as the developers defined a simple authentication protocol that allows a local version of NoCatAuth to communicate with an authentication server that resides somewhere else.

The significance of the NoCatAuth project is two-fold. The first and more obvious goal is allowing authentication on "open" networks. While NoCatAuth allows a local Wi-Fi network to implement any authentication service that they like (e.g., NoCatAuth could even be used to authenticate paying users in a commercial network) the NoCat group has greater ambitions. They also operate a free authentication service (auth.nocat.net) with the aim of hosting authentication for anyone who would like to participate. As the README file says, "We hope NoCatAuth helps you provide unlimited bandwidth everywhere for free." This is the second and more profound goal of the NoCatAuth project. Despite appearances, the NoCat group does not really aim to allow any Wi-Fi provider to authenticate their own users; in the documentation for NoCatAuth they suggest that running your own authentication services are time-consuming and costly. Instead, they recommend that Wi-Fi providers affiliate with an umbrella authentication organization. This is NoCatAuth's larger aim: to build a global authentication framework wherein any user of a free network can be authenticated centrally.

Strangers are a Problem

To the reader unfamiliar with this area, these goals may seem quite paradoxical. Why would the providers of *free* networks work so hard to develop a system of *authentication*? It seems nonsensical—even sinister—that so much effort would be expended by free wireless activists to build a global framework for centrally certifying user logins. In some way the NoCatAuth effort is a response to law—or the idea of law. It is an attempt to reconcile a new

technology with old ideas of private property, and the discussions about NoCatAuth's development are also discussions that treat anew the problem of what, exactly, is meant by "theft."

Wireless activism generally has been dogged by a stigma arising from free ridership. As briefly highlighted in case one, the wireless activist mantra has been that connectivity should be as free as the air (jokingly epitomized by one activist with the slogan, "Peace, Love, and Wi-Fi"). The problem has been that Wi-Fi, unlike air, is already understood as private property. The boom in Wi-Fi hot spots and the mushrooming of free access points described in the last section was the result not of a conscious altruism, it was the triumph of unreflective accidents. The consumer equipment (the AP) that an individual user purchased for his or her own use came direct from the factory with no security enabled. Taking an AP out of the box and turning it on would result in the accidental provision of an "open" Wi-Fi hot spot. In this way, the bulk of open Wi-Fi coverage is open by default and not by design. The concept of altruism in Wi-Fi (as in anything) has a saintly air, yet users of these accidentally open hot spots are not taking something that has been freely given. Just as the warchalkers were accused of being thieves, the open wireless co-ops like NoCat had to demonstrate that they were interested in taking only what was freely given. NoCatAuth was a way to show that they were not taking but trading – cooperating to create a system that benefited all. If the open wireless community could convince users to run NoCatAuth, it would be convincing them to make a sharing decision explicit, meaning that free wireless users could always defeat the charge that they were simple thieves. In this manner, NoCatAuth uses computer software to facilitate an electronic manifestation of gift-giving.

Nobody knows how many of the accidental sharers would continue to give away connectivity if the decision to do so was made explicit. Activists rightly fear that the ingrained respect for private property and the ownership implied by paying the backhaul bill every month (for DSL or a cable modem) would lead AP buyers to exclude free riders. If the question is phrased as, "Will you share your water or power with strangers?" the answer seems likely to be "no." However, if the offered calculus could be changed so that by giving access away the "altruistic" sharer doesn't lose anything, who could refuse? Proponents of NoCatAuth needed to redefine the sharing as something that would occur at no cost, and not even be noticeable.³³ NoCatAuth thus evolved with a design goal that the owner should be able to obtain an absolute

priority over free riders. As long as the AP owner used a flat-rate monthly broadband Internet service for backhaul, they do not pay for any usage in addition to their own, and any costs are passed along to their Internet Service Provider. This idea of eliminating any cost to owners is likely to have resulted (at least in part) from the Wi-Fi activists' ongoing attempts at lay jurisprudence. The mailing lists of the Wi-Fi community are littered with the postings of intelligent engineers and technologists who seek to puzzle out the legality of what they are doing via the lay interpretation of black-letter law. One of the most interesting of these is a lengthy review by Pozar (2002) that has achieved wide circulation. It attempts to cover all conceivable law and FCC regulation that might impact Wi-Fi co-ops, it is written by an engineer and was posted on mailing lists, then on the Web (subsequently it has been included as an appendix to the 2nd edition of Flickenger's book; 2003). Despite some of their slogans, these Wi-Fi "rebels" are quite often middle-class technical experts with a healthy respect for the law and the last thing they wish for is the title, "thief."

Selling the Air vs. Giving it Away

In an important parallel, Streeter (1996b, introduced above) analyzed the development of spectrum management in US television broadcasting as a property relation. He demonstrated that the ether was commodified as something that could be bought and sold because of the dominance of an ideology of *corporate liberalism* among business and government elites. In this way of thinking, proper stewardship of a scarce public resource demanded rules so similar to private ownership that they were effectively private ownership.³⁴ The case of NoCatAuth is quite different, in that it demonstrates that property relations can arise "from below" as much as from above. The idea of wireless connectivity that is "free as the air" is at first blush an idea that is subversive to property relations, yet this freedom was implemented in such a way that the intangible of Internet connectivity is, in the end, something that is agreed by all to be owned. In their (perhaps unconscious) fear of the law, technologists realized a system of rules in software that paralleled property relations, and defined what they were doing as giving gifts; and giving away something as a gift is the privilege of an owner.

This conception of gifting remains problematic, however, as Internet service is conceptualized by ISPs as a service and not as a good. ISPs usually have prohibitions in their subscriber agreements that preclude resale or connection-sharing, the latter being the chief occupation of the co-ops that might use NoCatAuth. ISPs see broadband Internet as a gift only

they can give, and they resist the notion that home users have purchased property by claiming that whatever property exists remains theirs. NoCatAuth is a move in a larger game where ISPs have tried to use private law as an instrument to shut down those that would give away their bandwidth. This has not been particularly successful to date: chasing individual altruists has proven to be terrible public relations, and the terms of service used by many ISPs are filled with ridiculous provisions that effectively state that the user cannot do anything the ISP doesn't like at any time. Many of these overbroad clauses are likely to be unenforceable.

Here we see cooperative action that goes directly against our expectations. The co-op behind NoCatAuth does not seem to be engaged in innovation or experimentation: if anything, the basic features of NoCatAuth as an authentication system were first realized for commercial ISPs and then borrowed by the co-op, and the technology of NoCatAuth uses readily available building blocks. Similarly, the co-op does not seem particularly invested in popularization. We might use one of O'Neil's consequences of CNs to explain this co-op, sense of community, yet this seems quite thin. The NoCatAuth mailing lists are much more practically oriented than the discussion for of the Warchalkers and Wi-Fi mappers. Like other successful open source software development communities, they want to build a "product" that works. NoCatAuth also seems to be more effective in terms of its own stated goals than Warchalking. While Warchalking claims to be a directory service and actually does not function (much) as one, NoCatAuth realizes the authentication system that it sets out to realize. We find some explanation in Fischer's notion of co-ops as a way of implementing desired features that vendors do not provide, but here the desire is not for a technical feature but for control of the authentication system itself. Users of NoCatAuth want their own system of affiliation, and they want to achieve a system that protects them from the legal epithet "thief." In this, they appear to have been successful, but on a small scale. Next, we will move from authentication to provision and examine the kind of coop that might employ NoCatAuth – a co-op dedicated to providing Internet service using Wi-Fi.35

Case Three: Consume and Internet Provision

The *Consume* project was founded in London, UK in 1999 as a "collaborative strategy for the self provision of broadband telecommunications infrastructure." ³⁶ *Consume* began with discussions between wireless enthusiasts who later assembled a diverse group that shared a

passionate anti-corporate feeling and a talent for aphorisms.³⁷ The *Consume* slogan is, "Trip the loop, make your switch, consume the net!" and (as in this last phrase) the name Consume most often evokes the meaning of "eat" – meaning literal consumption. Consume means to subsume the Internet, to internalize it, rather than to purchase it. Consume began with a radical set of assumptions about how provision should be structured. They explicitly refused any financial support from members, excepting only in-kind contributions of provision, expertise, or equipment. As one poster comments, "supercede the greed, let's take IT!" In addition, Consume's organization belies the word. Although founded in the UK, it admits no boundaries and lives on the Internet. From the discussions on its mailing lists, it seems to be a very loose confederation of individuals that pursue whatever projects they wish to pursue. Perhaps the least organized of the cooperatives we have examined so far, Consume acts chiefly as an information hub whose chief assets are its mailing lists and Web site. Consume also operates NodeDB, a directory of members that also functions as a GIS-driven Wi-Fi map similar to wifimaps.com (considered above as case study one). To "join" Consume you nominate yourself as a node, list your node in NodeDB, and are presented with a list of nodes that are near you (if any).38 You are then encouraged by the FAQ to contact nodes near you and arrange some way to interconnect. This is a vision of a mass of people throughout the UK throwing Ethernet cables over their back fences: if enough people follow this simple set of steps an alternative network to the Internet will have been creative by cooperative, volunteer action at very low cost.39

Unusually for provision co-ops, the members of *Consume* have devoted a large amount of energy to tackling the legal arrangements required to run a cooperative network infrastructure. Specifically, they realize that to be useful their network will have to interconnect with the existing Internet, and so they watch carefully for ISP reaction to connection sharing (introduced earlier in this paper). ISPs have tolerated (or not noticed) connection sharing, and it was hoped that some UK ISPs would formally embrace it, but the *Consume*-sponsored list of UK ISPs that endorse connection sharing remains almost blank.⁴⁰ The *Consume* membership also put a significant amount of effort into legally defining the peering arrangements to be used between *Consume* nodes. This has culminated in a formal peering agreement, called "PicoPeering" that defines the relationship between *Consume* nodes.⁴¹ *Consume* members have also spent effort to understand how connectivity to the Internet might flow between *Consume*

nodes. The usual practice is simply that Internet connectivity is shared to any Wi-Fi user that is within range, or that the *Consume* member makes an effort to enlist neighbors as users of their broadband connection (likely illegally). However, *Consume* thinks big, and has over the years pondered how to use strategic peering relationships with ISP to provide backhaul for an envisioned large network of nodes with no backhaul of their own.

Not incidentally, *Consume* also functions as a kind of *Consumer Reports* for Wi-Fi equipment, as members subject commercial equipment to a series of tests and much discussion is devoted to the best equipment (what to use, how to build it, where to buy it). *Consume* is also partly responsible for a number of spin-off projects. In addition to PicoPeering, above, *Consume* has provided a general starting point for a number of more focused, local network provision projects such as Arwain (http://www.arwain.com/), a Welsh provision co-op based in Cardiff.

Death to Telco Monopolies! Peer With Telco Monopolies!

In terms of motivation, Consume's public face does not present a particularly welljustified endeavor. In a way, Consume's general mission might be seen as attempting to cooperatively build a new, second Internet without the financing or expertise of the telecommunications companies of the first Internet. Not only is a volunteer-run, donated Internet infrastructure a very difficult challenge to set oneself, it doesn't have any of the immediacy of a need. Most of Consume's activity occurs in areas (such as London) that are already well-served, and so the creation of a second Internet takes on the fanciful air of one of Don Quixote's quests. A thread that runs through many discussions is the idea that commercial network services are presently very overpriced, but when compared to the trouble and difficulty of becoming your own network service provider, participation in a project like Consume is clearly not likely to save any money for the average participant, or to be an effective price protest. In the face of direct questioning about motivation, the public documents of Consume dissimulate. The Consume GeneralFAQ denies having a motivation, claiming that "[t]here is no single set of reasons why we should want to do this: one of *Consume*'s strengths is that it is many different things to many different people." In another section of the FAQ the response is an ironic and self-effacing dissembling. In answer to the question of why Consume should be founded to pursue these goals when so many other co-op organizations already exist to pursue them (see also Community Networks, above), the FAQ replies, "Death to the communications monopolies! May ten thousand autonomous systems bloom!" Yet as discussed above, *Consume* depends upon these hated monopolies for backhaul service, and seems to have high hopes of partnering with some commercial ISPs in the future.

In another light, the motivation of a Wireless provision co-op like *Consume* is obvious — to provide service to users. Even if users can obtain Internet service from an ISP, to be able to act as a network service provider for strangers could conceivably provide a thrill of accomplishment; both a validation of technical prowess and a useful (albeit possibly duplicate) service to society. It is strange, then, that there is little evidence on the mailing lists of widespread use of *Consume* services by non-members. Sometimes this realization comes as a disappointment to *Consume* members, as one mailing list post lamented in June, 2003:

Editing my dhcpd.conf file - I noticed it was exactly one year old. In that time I've not had one single connection from outside this house :(. Most recently my box was up for 34 days without a reboot - so it's not because I'm never online. And this is urban inner city North London - okay it's just an internal antenna....Very sad⁴²

It's certainly not true that no *Consume* service providers have users – some at least share tales of bandwidth sharing with neighbors. However the appearance of this comment (which was not widely commented upon) highlights the true essence of *Consume* as a network service provider – the resources of *Consume* exist for the use of *Consume* members. *Consume* is not particularly interested in recruiting novice users as this means more work for their scarce volunteer energy. Public place provision might be some exception, as users in public places may be transient to the degree that they are never in the area long enough to figure out who they might contact for technical support. The jargon-filled mailing lists and confusing Web site are an intimidating place for the novice, but attract the hobbyist with some technical skill and an urge to learn more.

A Public Place for a Private Purpose

What, then, to make of *Consume*? It could be judged a success as a hub that spawned a number of more focused projects, but by its own stated goal of collaboratively self-providing broadband it has a long way yet to go. Similar to our analysis of Wi-Fi mapping databases as network discovery services, we can consider the functional benefits of *Consume*'s activity as a community independent of the larger system and find it useful. *Consume* as a social group may (like warchalking or Wi-Fi mapping) promote technical knowledge and a sense of community.

Considering Consume in any larger context, however, leaves us struggling for a functional justification. We can at least see a little of the Hughes's "stage one" activity: experimentation in ways that would otherwise be considered pointless or too risky. Overall the effort seems still to be best explained as a social club for technical elites. The idea of a voluntary cooperative alternative Internet might yield significant societal benefits as a testbed used to pioneer alternative technologies and methods, but *Consume* appears far from realizing such a testbed. Its members are too dispersed to peer, or uninterested in peering anyway. The average person is unlikely to join, given the amount of expertise required to even understand what it is that might be joined. And beyond all of this, Consume has not articulated a compelling need or service - the frustration that drove rural farm co-ops into self-provision of electricity and telephones does not exist in most of the areas where Consume is active. Although some of the discussion in Consume for a is stridently anti-corporate, this opposition does not manifest itself as concern for the socioeconomically disadvantaged or an organized resistance to specific corporate practices that are seen as negative. The mailing lists of Consume are filled with examples that evoke Fischer's dictum that users adapt technology to their own ends and introduce new features and services. Consume members were serving public places (usually documented in the "description" field of Consume's node database) at a time when no commercial public hotspots were available, and they spoke of balconies, patios, streets, and public squares before wireless commercial Internet Service Providers in Britain. It is not possible to determine how often these public place nodes are used from the data available, but postings on the mailing list generally support the idea that they were constructed by and for a single *Consume* member – service in public places was deployed because it suited the AP owner, and if others stumbled across it that would be an added benefit. Whether this public place provision remains useful if commercial provision becomes widespread is another matter, one that returns this inquiry to larger questions about all three cases and the lessons from this research.

Assessing Cooperative Action in Wi-Fi Networking

How are these cooperatives valuable to the development of the communication system as a whole, or to society? From this evidence, those who hope that these co-ops represent the next wave of a popular movement will need to readjust their expectations. The chief problem for the success of any popularization of cooperative self-provision in this area is technical

knowledge. To realize *Consume*'s populist uprising and *NoCatAuth*'s vision of universal cooperative affiliation and voluntary sharing the technical hurdles are profound and striking. While off-the-shelf equipment is usable in some cases, to be a member of *Consume*, to operate a NoCatAuth gateway, or to wardrive for Wi-Fi networks one requires a very large amount of expertise. NoCatAuth, for example, requires the user to be running Linux, then requires the installation of additional software,⁴³ then requires additional configuration. NoCatAuth will not work with commercially packaged APs solutions unless the AP is connected to a Linux machine and any built-in gateway software is bypassed.

O'Neil's five-fold typology of consequences of CNs is now telling. While CN consequences include (1) "strong" democracy, (2) social capital, (3) individual empowerment, (4) sense of community, and (5) opportunities for economic development, we find that the cooperative action considered here seems to focus little on democracy, social capital, and opportunities for economic development. These co-ops function (as any community does) to generate social ties for members, it is true, and they promote technical knowledge and community in the same way that any voluntary association devoted to an educational purpose might. Overall, the Wi-Fi co-ops we have examined are inward-looking: they emulate Douglas's "cult of the boy operator" in radio before 1920 more than they do an outward-looking CN that builds its own internal community through an explicit mission of helping those outside the group that are disadvantaged. This is not meant to be a surprising finding, however, as when we defined cooperatives initially we noted that they are often vehicles for self-interest (as in the agricultural co-op). This distinction of an *inward-looking* co-op vs. an *outward-looking* CN is one that may be helpful in directing future research.

"Don't Cancel Your ISP Account Just Yet"

We mentioned that each different functional role (discovery, authentication, provision) might trigger different weaknesses (disorganization, unreliability, lack of expertise) and strengths (flexibility, heightened awareness of public interest concerns, low cost) of the cooperative form of organization. Interestingly, the Wi-Fi mappers managed to surmount the traditional co-op weakness of disorganization by centralizing a Web-based system of automated reputation ranking to direct their activities. All co-ops examined here showed great evidence of building expertise among those already possessing some expertise. While we often think of co-ops as lacking expertise when compared to their professional commercial counterparts, the

discussion boards of these co-ops demonstrate much more expertise than the technical support lines of the commercial ISPs that they interact with. Indeed, co-ops are in some cases so expert that this makes it impossible to imagine their success as a populist consumer movement. Unreliability was also not the problem we expected it to be. While the co-op mapservers are sometimes unexpectedly unavailable, there are multiple mapservers that are somewhat redundant, and it is possible to use another when one is not available. While it is difficult to depend on a vounteer organization, NoCatAuth produces software code that, once finished, runs without much required support. And while the individual nodes of *Consume* may not be reliable sources of connectivity, *Consume* is implemented as a redundant system, a second Internet. Members are expected to have another source of Internet connectivity (in the words of GeneralFAQ, "Don't cancel your ISP account just yet").

Similarly, while we expected the cooperative organizational form to be more flexible, sensitive to public interest concerns, and low in cost than non co-op counterparts, the results of this inquiry are mixed. As demonstrated by the above assessment of O'Neil's typology, these co-ops were not particularly sensitive to public interest concerns in practice, although in their stated goals they often claimed to be.44 Consume did demonstrate considerable flexibility but it did so by having undefined goals and no internal organization – probably a liability had a clearer goal been on offer. The data about NoCatAuth examined here did not provide a good test of flexibility as compared to a commercial system. In terms of cost, NoCatAuth and the Wi-Fi mappers provided substitutes for goods that are available in the marketplace. NoCatAuth replaces an authenticating captive portal that would otherwise have to be purchased or programmed, while Wi-Fi mapservers very imperfectly replace the directory service provided by national or federated ISPs. Both co-ops provide these services for free. *Consume* is a harder case, providing some network access to users for free but costing its members a great deal of effort and equipment. These findings are pessimistic only for those who expected Wi-Fi to be an emancipatory technology empowering everyone to operate their own telecommunications carrier. If we consider the implications for public policy, promising avenues for action remain open.

Co-op Policy Experiments: The Blank Spot Bounty and Other Notions

This paper's initial literature review asserts a need for greater telecommunications policy attention to co-ops. Hughes, Douglas, McChesney, Streeter, and others all implicitly or

explicitly lead us to expect that amateur action in the early moments of a technological system has been an engine for experimentation, innovation, popularization, and provision of features or service that are not on offer from commercial vendors. Here we must be very clear: If these case studies have demonstrated anything it is *not* that co-ops are ineffectual. Quite the opposite—these groups appear to be extremely capable: while NoCatAuth is largely a replication of what already exists in commercial systems, nonetheless it works and it is free. Similarly, the extensive mapping databases produced by groups like *Zhrodague* and *Consume's* repository of user information are professionally produced, technically sophisticated and effective in their own terms—that is, *Zhrodague* makes beautiful maps. These maps don't work as a directory service because they were never really intended to; these maps are an aesthetic project and a community-building hobby. Similarly, *Consume's* members deploy Wi-Fi hotspots that work, but they often deploy them in places where they are unnecessary. The issue is not whether or not these groups are capable, it is how to align the talents of this skilled population with society's needs.

In Wi-Fi, this mismatch between cooperative action and societal goals can be addressed by public policy. Attempting to mobilize cooperatives is even a relatively low-risk, low-cost policy option — these groups have shown a great willingness to invest large sums of their own effort and equipment. It appears that co-ops genuinely want to help: beyond *Consume's* catchy but argumentative slogans, the mission statements of most cooperatives include goals directly tied to public service. Consider this assortment of statements made in public documents: *BARWN* exists to build a research testbed, *Bristol Wireless* will "reduce the digital divide," *CUWiN* intends to promote content production by "grassroots media-makers," *DFW Wireless* promotes the use of wireless technologies, *RotterdamWireless* is dedicated to "access for all," *NoVAWireless* hopes to bring internet access to underserved areas, *NYCWireless* will promote research and development, *Personal Telco* plans to build community empowerment by linking public places, *RAWUG* will educate users, *SF Wireless* pledges bandwidth "to those who need it," *TCwireless* will document access locations to promote economic development, *TCWUG* charges its members to make resource sharing easier, *TWCN* hosts a forum for communication between users and service providers, *WSCIC* builds wireless services in "DSL deserts." ⁴⁵

Like most areas of public policy, telecommunications has a relatively small, well-known set of central problems. The present situation in the Wi-Fi cooperatives considered here

suggests a viable public program of targeted subsidy that would rein the enthusiasms of these amateurs to the problems of telecommunication policy. Two longstanding societal goals are innovation in new telecommunication services and access in underserved areas. In the US, the federal programs that currently exist to support these goals will never mobilize Wi-Fi co-ops unless changes are made. Specifically, the US Commerce Department's Technology Opportunities Program (TOP) exists to support experimentation in services by nonprofit organizations. This might seem a useful channel to promote grassroots Wi-Fi innovation. (In the FY 2004 funding round of \$12.9 million, the agency has even declared a special interest in Wi-Fi proposals.) However, while these grants emphasize experimentation it is unlikely that most Wi-Fi co-ops would be able to apply – they may be organized enough to produce hardware and software solutions to telecommunications problems, but not organized enough to demonstrate eligibility for these funds through the Byzantine application process. Moreover, the average amount for a TOP grant exceeds the scale of most co-ops. Turning to the second goal, access in underserved areas, at the time of writing both the US and UK are currently perceived to be lagging in the deployment of broadband.⁴⁶ The dominant policy approach to increasing all forms of telecommunications deployment in underserved areas has relied upon cross-subsidy to providers (e.g., in the US in 2002, \$5.3 billion was disbursed in universal service funding⁴⁷), yet it would be very difficult for a Wi-Fi co-op to receive these funds even if they provided effective service. While the co-ops consider themselves to be providers, public policy considers them to be users, and ineligible. Therefore, although co-ops are capable, current policy instruments like TOP and universal service subsidy will fail to reach them.

It is straightforward to imagine an inexpensive policy instrument that would succeed. Continuing the example of access in underserved areas, policymakers can borrow a trick from the Wi-Fi mappers and assign a bounty to blank areas on the map. In "DSL deserts," rather than waiting for telecommunications carriers to act,⁴⁸ public policy can take Fischer's autonomous users to heart and encourage the underserved to provide their own service. This would entail a policy strategy emphasizing education (e.g., a clearinghouse of instructions for self-provision) and interconnection guarantees (e.g., a clarification of the Wi-Fi co-op's status when obtaining backhaul). Additionally, cross-subsidy mechanisms could be modified so that cooperating groups of "users" would more easily be recognized as providers eligible for universal service support. Almost all co-ops interested in provision also have an interest in

experimentation in IP telephony. This presents the possibility that experimental co-ops could self-provide both high-cost rural local loop service and advanced broadband service using unlicensed wireless.

Like Douglas's radio amateurs of old, Wi-Fi co-ops currently exhibit a pervasive insecurity. The co-ops examined in this study devoted a considerable amount of unnecessary effort to avoid the label of "thief" (case two's treatment of Wi-Fi service ownership and gifting) and to the drafting formal agreements in the face of legal uncertainty (case three's PicoPeering and lay jurisprudence). As experimentation by radio amateurs was eventually legitimated in US communication policy, legitimating experimentation and service by cooperatives and clarifying their legal position might be an inexpensive simple first step.⁴⁹

Quest for True Builders: Directions for Future Research

This study presented only a first look at cooperative action in Wi-Fi. This research was conducted in 2003 in an area that changes very quickly, and this research design attempted only a preliminary investigation of Wi-Fi cooperatives in light of theories of infrastructure development. This begs a second look to address this research context with alternative, complementary methods better able to directly assess the scope of these co-ops and their activities. At the conclusion of this study, the prospects for cooperative action in Wi-Fi remain murky. At the least, this work suggests some revision of how we are prone to consider co-ops as an organizational form in telecommunications. The assumption that co-ops are flexible but inexpert public-interest minded altruists was more stereotype than substance. These co-ops were varied, and might even be characterized as inflexible, self-interested, inward-looking, and expert. (However, if the category "cooperative" fails us in cohesive meaning, it does no worse than the equally broad term "commercial.") Two of the co-ops considered here arguably served several non-obvious purposes that were not their stated goals. NoCatAuth did what it aimed to do, but the Wi-Fi mappers seemed uninterested in the actual provision of a directory (map) service, and more interested in learning how to make maps and discover networks. Consume served a diverse variety of purposes, but the main effect was probably not the widespread selfprovision of broadband that was its stated goal. In cooperative organizations that are not defined by profit, we should be more skeptical of the stated goal of the organization. Further research should more directly address the possibility of co-ops as an important symbiote to other infrastructure, providing service in commercially undesirable areas. As an urban

organization *Consume* was a poor test case to choose for the study of provision if this symbiotic relationship were the chief issue. A valuable future comparison would consider *Consume's* activities in London alongside a rural co-op where wireless provides the only viable infrastructure for broadband Internet access.⁵⁰ The provision function, particularly, requires further study before a firm conclusion can be reached about the value of cooperative provision. While these cases were selected to inform theoretical understandings of cooperative action in telecommunications, a pragmatic next step would be to determine how many provision co-ops are actually building infrastructure and serving users. Finally, consistent with Hughes, there may be occasions where a co-op's actions could be more important than that of commercial organizations for reasons of innovation. These co-ops did evince widespread experimentation, but in this small sample of three there is not evidence of innovation of any great significance (and we would not expect to stumble upon it in a sample this size). Claims of innovation and experimentation benefits from cooperative action then call for a quest to determine and assess the most innovative Wi-Fi co-ops.

This initial assessment concludes with these further questions, as any first look should. On cooperative action more generally, Henry David Thoreau famously believed that "the only cooperation which is commonly possible is exceedingly partial and superficial." In contrast, Franklin D. Roosevelt said in an early campaign speech that, "competition has been shown to be useful up to a certain point and no further, but cooperation…begins where competition leaves off." In the area of Wi-Fi, this assessment ends with ambivalence, somewhere between Thoreau and Roosevelt, but with the prospect that innovative public policy action can shift cooperation toward a more useful future.

TABLE 1. Overview of Cases and Functions		
Function	Cooperative	Opposed to
(i) Discovery	Warchalkers/mappers (Zhrodague)	Federated Wi-Fi ISPs (Boingo)
(ii) Authentication	Software Developers (NoCatAuth/Splash)	Default Equipment (3Com Home Gateway)
(iii) Provision	Network operators (Consume)	Broadband ISPs (BT OpenWorld)

References

- Bar, F. & Galperin, H. (2004, March). *Building the wireless Internet infrastructure: From cordless Ethernet archipelagos to wireless grids*. Paper presented at the European Communications Policy Research Conference, Barcelona, Spain.
- Beniger, J. R. (1986). *The control revolution: Technological and economic origins of the information society.* Cambridge: Harvard University Press.
- Bijker, W. E., Hughes, T. P., & Pinch, T. J. (Eds.). (1987). *The social construction of technological systems: New directions in the sociology and history of technology*. Cambridge: MIT Press.
- Bijker, W. E., & Law, J. (Eds.). (1992). Shaping technology / building society: Studies in sociotechnical change. Cambridge, MA: MIT Press.
- Byers, S., & Kormann, D. (2003). 802.11b access point mapping. *Communications of the ACM*, 46(5): 41-46.
- Chandler, A. D., Jr. (1962). Strategy and structure: Chapters in the history of the American industrial enterprise. Cambridge: MIT Press.
- Chandler, A. D., Jr. (1977). *The visible hand: The managerial revolution in American business*. Cambridge, MA: Belknap Press.
- Cherry, S. M. (2002). What went wrong at Ricochet? IEEE Spectrum, 39(3), 60-61.
- Douglas, S. J. (1989). *Inventing American broadcasting, 1899-1922*. Baltimore: Johns Hopkins University Press.
- Escudero, A. (2003a). WLAN (802.11b) and WMAN (802.16a) broadband wireless access: When opportunities drive solutions. Paper presented to "The Wireless Internet Opportunity for developing nations," W2i and UN ICT Task Force: New York.
- Escudero, A. (2003b). Freedom of information builds up in an open and affordable network infrastructure. Paper presented to the Organization for Security and Co-operation in Europe conference on "Freedom of Media:" Vienna, Austria.
- Fischer, C. S. (1985). Studying technology in social life. In M. Castells (Ed.), Technology, Space, and Society: Emerging Trends. Beverly Hills, CA: Sage.
- Fischer, C. S. (1987a). The revolution in rural telephony, 1900-1920. *Journal of Social History*, 21(Fall), 5-26.
- Fischer, C. S. (1987b). Technology's retreat: The decline of rural telephony, 1920-1940. *Social Science History*, 11(Fall), 295-327.
- Fischer, C. S. (1992). *America calling: A social history of the telephone to 1940*. Berkeley, CA: University of California Press.
- Flickenger, R. (2003). Building wireless community networks. (2nd ed.) Sebastopol, CA: O'Reilly.
- Gast, M. (2002). 802.11 Wireless networks: The definitive guide. Sebastopol, CA: O'Reilly.
- Hacking, I. (1999). The social construction of what? Cambridge: Harvard University Press.
- Hammersley (2002, July 4). Warchalking. *The Guardian Online*. Retrieved July 7, 2003 from http://www.guardian.co.uk/online/story/0,3605,748499,00.html

- Hampton, K. N., & Wellman, B. (1999). Netville on-line and off-line: Observing and surveying a wired suburb. *American Behavioral Scientist*, 43(3), 475-492.
- Hampton, K. N., & Wellman, B. (2000). Examining community in the digital neighbourhood: Early results from Canada's wired suburb. In K. Isbister (Ed.), *Digital Cities: Technologies, Experiences, and Future Perspectives* (pp. 194-208). Heidelberg, Germany: Springer-Verlag.
- Harrison, T. M., & Stephen, T. (1999). Researching and creating community networks. In S. Jones (Ed.), *Doing Internet Research: Critical Issues and Methods for Examining the Net* (pp. 221-241). Thousand Oaks, CA: Sage Publications.
- von Hippel, E. (1988). The sources of innovation. Oxford, UK: Oxford University Press.
- von Hippel, E. & von Krogh, G. (forthcoming). Open source software and the private-collective innovation model: Issues for organization science. *Organization Science*.
- Hughes, T. P. (1983). *Networks of power: Electrification in Western society, 1880-1930.* Baltimore: Johns Hopkins University Press.
- Hughes, T. P. (1987). The evolution of large technological systems. In W. E. Bijker, T. P. Hughes & T. J. Pinch (Eds.), *The social construction of technological systems: New directions in the sociology and history of technology* (pp. 51-82). Cambridge: MIT Press.
- Institute of Electrical and Electronics Engineers. (1999). *Wireless LAN medium access control and physical layer specifications* (No. 802.11, 1999 Edition). New York: IEEE Computer Society.
- Kahin, B., & Keller, J. (eds.) (1995). Public access to the Internet. Cambridge, MA: MIT Press.
- Kershaw, M. (2003, September.) Linux-powered wireless hot spots. Linux Journal 113: 52.
- Kling, R., & Iacono, C. S. (1995). Computerization movements and the mobilization of support for computerization. In S. L. Star (Ed.), *Ecologies of knowledge: Work and politics in science and technology* (pp. 119-153). Albany, NY: State University of New York Press.
- Kling, R. (2000). Learning about information technologies and social change: The contribution of social informatics. *The Information Society* 16(3): 217:232.
- Leyden, John. (2001, March 29). War driving: The latest hacker fad. *The Register*. Retrieved November 12, 2003 from http://www.theregister.co.uk/content/8/17976.html
- Negroponte, N. (2002). Being wireless. *Wired*, 10 (10). http://www.wired.com/wired/archive/10.10/wireless.html
- Noble, D. F. (1979). *America by design: Science, technology, and the rise of corporate capitalism.* Oxford: Oxford University Press.
- O'Neil, D. (2002). Assessing community informatics: A review of methodological approaches for evaluating community networks and community technology centers. *Internet Research*, 12(1), 76-102.
- Parsons, T. (1951). The social system. Glencoe, IL: Free Press.
- Parsons, T. (1966). *Societies: Evolutionary and comparative perspectives*. Englewood Cliffs, NJ: Prentice-Hall.
- Parsons, T. (1971). The system of modern societies. Englewood Cliffs, NJ: Prentice-Hall.

- Pool, I. d. S. (1974). Introduction. In I. d. S. Pool (Ed.), *The social impact of the telephone*. Cambridge, MA: MIT Press.
- Potter, B. & Fleck, B. (2002). 802.11 security. Sebastopol, CA: O'Reilly.
- Pozar, T. (2002, June). *Regulations affecting 802.11 deployment*. (v. 1.3.) Retrieved December 8, 2003 from http://www.lns.com/papers/part15/Regulations_Affecting_802_11.pdf
- Richards, S., & Associates. (1974). Hobo signs. New York: Barlenmir House.
- Rheingold, H. (2002). Smart mobs: The next social revolution. New York: Basic Books.
- Rogers, E., Collins-Jarvis, L., & Schmitz, J. (1994). The PEN project in Santa Monica: Interactive communication equality and political action. *Journal of the American Society for Information Science*, 45, 401-410.
- Sandvig, C. (2003). Public internet access for young children in the inner city: Evidence to inform access subsidy and content regulation. *The Information Society*, 19(2): 171-183.
- Sawhney, H. (2002). Public telephone network: Stages in infrastructure development. *Telecommunications Policy*, *16*(7): 538-552.
- Schmitz, J., Rogers, E., Phillips, K., & Paschal, D. (1995). The Public Electronic Network (PEN) and the homeless in Santa Monica. *Journal of Applied Communication*, 23(26-43).
- Schuler, D. (1994). Community networks: Building a new participatory medium. *Communications of the ACM*, *37*(1), 39-51.
- Schuler, D. (1996). New community networks: Wired for change. New York: Addison-Wesley.
- Silver, D. (forthcoming). The soil of cyberspace: Frameworks and foundations for a healthy public sphere. In P. Day (Ed.), *Shaping the Network Society: The Future of the Public Sphere in Cyberspace*. Cambridge, MA: MIT Press.
- Smulyan, S. (1994). *Selling radio: The commercialization of American broadcasting* 1920-1934. Washington, D.C.: Smithsonian Institution Press.
- Straubhaar, J., LaPastina, A., Lentz, B., Main, S., & Taylor, J. (2000). *Structuring access: The Role of Public access centers in the "digital divide"* (Report of the Telecommunications and Information Policy Institute). Austin, TX: The University of Texas.
- Streeter, T. (1996a). The "new historicism" in media studies. *Journal of Broadcasting and Electronic Media*, 40(4), 553-557.
- Streeter, T. (1996b). *Selling the air: A critique of the policy of commercial broadcasting in the United States*. Chicago: University of Chicago Press.
- Vandertie, A. (1995). *Hobo and tramp art carving: An authentic American folk tradition*. New York: Sterling.
- Wiener, N. (1948). *Cybernetics: Or, control and communication in the animal and the machine.* Cambridge, MA: MIT Press.
- Williams, R., & Edge, D. (1996). The social shaping of technology. In W. H. Dutton (Ed.), *Information and communication technologies: Visions and realities* (pp. 53-67). Oxford, UK: Oxford University Press.
- Yin, R. K. (1994). Case study research: Design and methods (2nd ed.). Thousand Oaks, CA: Sage.

Notes

¹ Information about wireless node "SpeakersCorner" in Hyde Park is current as of August, 2003.

² Wi-Fi employs the spectrum made available in the FCC's Part 15 rules for unlicensed operation.

³ This quote was taken from the Apple Press release archives: (http://www.apple.com/pr/library/1999/jul/21lucent.html)

Ricochet is now defunct as a national system (see Cherry, 2002).

⁵ However, a host of high-speed proprietary implementations of Wi-Fi also appeared to allow speeds beyond those defined by the 802.11b specification. Even though this caused incompatibilities between different vendors at high speeds, interoperation by "plain" 802.11b was still usually a possible slower fallback standard between any two 802.11b devices.

⁶ The industry group was the Wireless Ethernet Compatibility Alliance (WECA).

⁷ In 802.11 terminology, an Extended Service Set (ESS).

⁸ This comparison to Ethernet aptly distinguishes Wi-Fi from other related wireless data technologies like *Bluetooth* (which uses the same spectrum at very short range to form Personal Area Networks) or 3-G (the "third generation" of mobile telephony which uses the spectrum assigned for mobile telephony to carry data as well as voice at high speeds, presumably with a mobile phone as the terminal device). Wireless enthusiasts may also be familiar with HiperLAN, a failed European competitor to Wi-Fi, and HomeRF, a failed US competitor to Wi-Fi championed by Motorola.

⁹ No standards exist for true 802.11 roaming. Roaming solutions are proprietary and any roaming that involves nodes from more than one vendor may not work. Technically, macro-networks provide shared authentication—a user is allowed access from one of many ESSs, but may not move across ESS boundaries in real-time.

¹⁰ This "federated" approach is particularly relevant to our second case study, which is co-op developed software that allows non-commercial networks to be federated.

¹¹ For our purposes, "extensive" usually required a public mailing list archive to allow researchers to read the internal communications of the group.

¹² See: http://wifi.meetup.com/

¹³ It is possible that this function is not so important, and that the most relevant authentication mechanism will eventually be to allow anyone access to everything. This is still a policy of authentication, however, and we will include authentication because it is important here even for free or "open" networks, as we will see in case two. ¹⁴ For instance, the software that matches Wi-Fi users to their billing account when they try to use a Wi-Fi hot spot run by a commercial ISP; typically these use Web redirection and SSL, RADIUS, or PPP-over-Ethernet

authentication, although many authentication strategies are now used. ¹⁵ Consume does not charge for service, and thus does not implement any billing.

¹⁶ The primary source material for each case is extensive. An average co-op of our list of 52 might have a mailing list archive spanning two years containing 1,000 messages, a large wiki (a Web-based collaboration tool), a chat channel, and a public Web site. Material was plentiful for our three cases. For instance, Consume (case three) has an archive of nine mailing lists spanning four years: at the end of 2003: this contained over 41MB of plain text discussion

¹⁷ This comparison is not meant to be as fanciful as it may appear: in some post-socialist states the reliable telephone directories of the formerly state-run PTT have stopped appearing and been replaced by word-of-mouth "service" among groups of friends.

The verb coined by Jones to mean the activity of finding and marking Wi-Fi access, "Warchalking," is a reference to "war dialer" software used by hackers (neé crackers) to call all of the telephone numbers in a given set of exchanges looking for the handshaking tones of a modem. The name "war dialer" is itself a reference to the 1983 hacker movie War Games starring Matthew Broderick.

¹⁹ See for example news coverage such as Hammersley (2002).

²⁰ Wardriving predates Warchalking: Jones was likely aware of this as it was received first mention in the UK trade press over a year earlier (Leyden, 2001).

21 See, e.g., NODEDB at http://www.consume.net/, http://www.wifimaps.com/, and http://www.netstumbler.com/.

²² Under a strict reading of US law, these activities would be illegal, but there have been no prosecutions.

²³ See: http://www.zhrodague.net/.

²⁵ See http://www.pghwireless.com/. Pghwireless is an example of a provision co-op, our case three.

²⁶ One member's resume boasts a specialty of "securing Wi-Fi networks."

- ²⁷ The material in this section comes from a mailing list challenge made by the author in November, 2002 to find people who actually used warchalking as a meaningful directory service. The author wishes to thank the many correspondents that answered this challenge, although none of them were able to provide a case of warchalking as a meaningful directory service, their insights were very helpful to this research. The challenge eventually evolved into a bounty (of \$1) for an example -- the bounty remains unpaid. Special thanks go particularly to Jeremy Hunsinger and Ben Partridge for their assistance in this effort. The bounty is chronicled at: http://www.niftyc.org/bet/ and may in the end have led to the author's office being warchalked.
- ²⁸ The traditional chalk marks used on the walls of Oxford colleges to denote rowing victories are often made on walls that are unprotected from the elements, and these chalk marks can last for six to twelve years and still be legible if they are not erased.

²⁹ According to the Internet Archive. See: http://web.archive.org/.

- ³⁰ Scatter of Wi-Fi signals is quite significant and the actual picture of a Wi-Fi Access point would never be represented by a circle, as it is represented in a Wi-Fi mapserver.
- ³¹ "You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles. Do you understand this? And radio operates exactly the same way: you send signals here, they receive them there. The only difference is that there is no cat."
- ³² Taken from Rob Flickenger's introduction to NoCat at: http://nocat.net/wiki/index.cgi?AuthIntro
- ³³ A parallel might be made with the trade-off in peer-to-peer file sharing software between bandwidth allocated to uploads vs. downloads. However, on the file sharing systems in use today, altruism can affect your own use and cost you slower downloads.

 34 Spectrum allocation in US law has specifically precluded ownership since the Communications Act of 1934.
- 35 While statistics on this are not kept, it is likely that some of Consume's many members have installed or experimented with *NoCatAuth* to produce splash pages.

 36 Taken from the Consume GeneralFAQ at http://consume.net/twiki/bin/view/Main/GeneralFAQ
- ³⁷ Unless otherwise noted the material in this section comes from the Consume mailing list archives at: http://lists.consume.net/mailman/listinfo and from the Consume wiki at: http://consume.net/. This section is also indebted to the research of Claire Charbit at École Nationale Supérieure des Télécommunications, Paris, France. The ENST team kindly provided access to transcripts from interviews of key figures in Wi-Fi cooperatives performed in 2003 by Dominique Combescure and Guillaume Jego.

 38 This section is based on the first author's experiences joining Consume, constructing a node called
- "SpeakersCorner" using low-cost commercial equipment to provide Wi-Fi coverage to Speaker's Corner in Hyde Park. The author would like to thank the Stanhope Centre for Communications Policy Research for providing office space and support for this project.
- Admittedly, if this scenario were to come true, the routing difficulties would be daunting.
- ⁴⁰ See: http://consume.net/twiki/bin/view/Main/ISPsAllowingSharing
- ⁴¹ See: http://www.picopeer.net/PPA-english.html. Development of the Picopeering agreement has stalled at the time of writing.
- ⁴² From: http://lists.consume.net/pipermail/consume-thenet/2003-June/008275.html
- ⁴³ For instance, *gpgv* and *tc*.
- ⁴⁴ In mission statements, statements of goals, and Web pages about these organizations.
- ⁴⁵ Jolene White contributed essential research assistance in gathering these statements.
- ⁴⁶ This does not mean to imply that the common practice of conceptualizing the deployment of advanced telecommunications services as a race between competing nations is analytically useful.
- ⁴⁷ This figure refers to disbursements from the US Universal Service Administrative Company.
- ⁴⁸ In the US, the Section 706 Advanced Services Inquiry is the home of this waiting game.
- ⁴⁹ For example, a "Wireless Cooperative Showcase" could be staged in the format of the US Federal Communication Commission's 2003 "Rural Wireless Internet Service Provider Showcase."
- ⁵⁰ For example, the Didcot Ring: http://www.didcotring.uk.net/.

²⁴ The mapserver is a very prominent one—it contains over 100,000 nodes and receives submissions from Warchalkers far beyond Pittsburgh: e.g., the screen shown is not for Pittsburgh, but for Chicago.

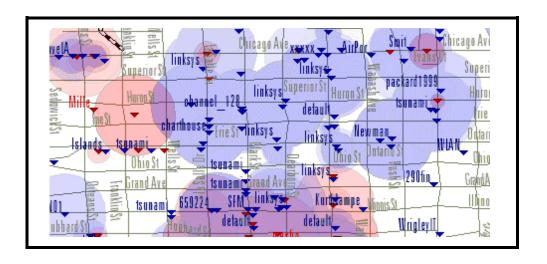

Captions to Illustrations

FIGURE 1. A Comparison of Discovery Symbols

FIGURE 2. Sample Output From a Mapserver: Chicago, IL by Zhrodague

"Hobo Signs"^a US, c. 1880 – 1940 Warchalking Symbols^b London, UK, Summer 2002 11Mbít/s 11Mbít/s Will Trade Food Safe Campsite Open Node Closed Node for Chores

^a Adapted from Vandertie (1995) and Richards (1974). ^b Taken from http://www.warchalking.org/

